Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(5): 260, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35474501

RESUMO

Osteoarthritis (OA) synovial membrane is mainly characterized by low-grade inflammation, hyperplasia with increased cell proliferation and fibrosis. We previously underscored a critical role for CEMIP in fibrosis of OA cartilage. However, its role in OA synovial membrane remains unknown. An in vitro model with fibroblast-like synoviocytes from OA patients and an in vivo model with collagenase-induced OA mice were used to evaluate CEMIP-silencing effects on inflammation, hyperplasia and fibrosis. Our results showed that i. CEMIP expression was increased in human and mouse inflamed synovial membrane; ii. CEMIP regulated the inflammatory response pathway and inflammatory cytokines production in vitro and in vivo; iii. CEMIP induced epithelial to mesenchymal transition pathway and fibrotic markers in vitro and in vivo; iv. CEMIP increased cell proliferation and synovial hyperplasia; v. CEMIP expression was increased by inflammatory cytokines and by TGF-ß signaling; vi. anti-fibrotic drugs decreased CEMIP expression. All these findings highlighted the central role of CEMIP in OA synovial membrane development and underscored that targeting CEMIP could be a new therapeutic approach.


Assuntos
Transição Epitelial-Mesenquimal , Hialuronoglucosaminidase , Osteoartrite , Animais , Citocinas/metabolismo , Fibrose , Humanos , Hialuronoglucosaminidase/metabolismo , Hiperplasia/metabolismo , Inflamação/patologia , Camundongos , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
2.
J Clin Med ; 10(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830613

RESUMO

Osteoarthritis (OA) is recognized as being a cellular senescence-linked disease. Intra-articular injections of glucocorticoids (GC) are frequently used in knee OA to treat synovial effusion but face controversies about toxicity. We investigated the influence of GC on cellular senescence hallmarks and senescence induction in fibroblast-like synoviocytes (FLS) from OA patients and mesenchymal stem cells (MSC). METHODS: Cellular senescence was assessed via the proliferation rate, ß-galactosidase staining, DNA damage and CKI expression (p21, p16INK4A). Experimental senescence was induced by irradiation. RESULTS: The GC prednisolone did not induce an apparent senescence phenotype in FLS, with even higher proliferation, no accumulation of ß-galactosidase-positive cells nor DNA damage and reduction in p21mRNA, only showing the enhancement of p16INK4A. Prednisolone did not modify experimental senescence induction in FLS, with no modulation of any senescence parameters. Moreover, prednisolone did not induce a senescence phenotype in MSC: despite high ß-galactosidase-positive cells, no reduction in proliferation, no DNA damage and no CKI enhancement was observed. CONCLUSIONS: We provide reassuring in vitro data about the use of GC regarding cellular senescence involvement in OA: the GC prednisolone did not induce a senescent phenotype in OA FLS (the proliferation ratio was even higher) and in MSC and did not worsen cellular senescence establishment.

3.
Biochem J ; 478(16): 3145-3155, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34405859

RESUMO

Autophagy receptor p62/SQSTM1 signals a complex network that links autophagy-lysosomal system to proteasome. Phosphorylation of p62 on Serine 349 (P-Ser349 p62) is involved in a cell protective, antioxidant pathway. We have shown previously that P-Ser349 p62 occurs and is rapidly degraded during human synovial fibroblasts autophagy. In this work we observed that fingolimod (FTY720), used as a medication for multiple sclerosis, induced coordinated expression of p62, P-Ser349 p62 and inhibitory TFEB form, phosphorylated on Serine 211 (P-Ser211 TFEB), in human synovial fibroblasts. These effects were mimicked and potentiated by proteasome inhibitor MG132. In addition, FTY720 induced autophagic flux, LC3B-II up-regulation, Akt phosphorylation inhibition on Serine 473 but down-regulated TFEB, suggesting stalled autophagy. FTY720 decreased cytoplasmic fraction contained TFEB but induced TFEB in nuclear fraction. FTY720-induced P-Ser211 TFEB was mainly found in membrane fraction. Autophagy and VPS34 kinase inhibitor, autophinib, further increased FTY720-induced P-Ser349 p62 but inhibited concomitant expression of P-Ser211 TFEB. These results suggested that P-Ser211 TFEB expression depends on autophagy. Overexpression of GFP tagged TFEB in HEK293 cells showed concomitant expression of its phosphorylated form on Serine 211, that was down-regulated by autophinib. These results suggested that autophagy might be autoregulated through P-Ser211 TFEB as a negative feedback loop. Of interest, overexpression of p62, p62 phosphorylation mimetic (S349E) mutant and phosphorylation deficient mutant (S349A) in HEK293 cells markedly induced P-Ser211 TFEB. These results showed that p62 is involved in regulation of TFEB phosphorylation on Serine 211 but that this involvement does not depend on p62 phosphorylation on Serine 349.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fibroblastos/metabolismo , Proteína Sequestossoma-1/metabolismo , Serina/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Western Blotting , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Fibroblastos/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Células HEK293 , Humanos , Imunossupressores/farmacologia , Leupeptinas/farmacologia , Microscopia de Fluorescência , Mutação , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína Sequestossoma-1/genética , Serina/genética , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo
4.
Exp Mol Med ; 53(2): 210-222, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33526813

RESUMO

Osteoarthritis is characterized by structural alteration of joints. Fibrosis of the synovial tissue is often detected and considered one of the main causes of joint stiffness and pain. In our earlier proteomic study, increased levels of vitronectin (VTN) fragment (amino acids 381-397) were observed in the serum of osteoarthritis patients. In this work, the affinity of this fragment for integrins and its putative role in TGF-ß1 activation were investigated. A competition study determined the interaction of VTN(381-397 a.a.) with αVß6 integrin. Subsequently, the presence of αVß6 integrin was substantiated on primary human fibroblast-like synoviocytes (FLSs) by western blot and flow cytometry. By immunohistochemistry, ß6 was detected in synovial membranes, and its expression showed a correlation with tissue fibrosis. Moreover, ß6 expression was increased under TGF-ß1 stimulation; hence, a TGF-ß bioassay was applied. We observed that αVß6 could mediate TGF-ß1 bioavailability and that VTN(381-397 a.a.) could prevent TGF-ß1 activation by interacting with αVß6 in human FLSs and increased α-SMA. Finally, we analyzed serum samples from healthy controls and patients with osteoarthritis and other rheumatic diseases by nano-LC/Chip MS-MS, confirming the increased expression of VTN(381-397 a.a.) in osteoarthritis as well as in lupus erythematosus and systemic sclerosis. These findings corroborate our previous observations concerning the overexpression of VTN(381-397 a.a.) in osteoarthritis but also in other rheumatic diseases. This fragment interacts with αVß6 integrin, a receptor whose expression is increased in FLSs from the osteoarthritic synovial membrane and that can mediate the activation of the TGF-ß1 precursor in human FLSs.


Assuntos
Antígenos de Neoplasias/metabolismo , Integrinas/metabolismo , Osteoartrite/complicações , Domínios e Motivos de Interação entre Proteínas , Sinovite/etiologia , Sinovite/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vitronectina/metabolismo , Idoso , Antígenos de Neoplasias/genética , Biomarcadores , Cromatografia Líquida , Suscetibilidade a Doenças , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Integrinas/genética , Masculino , Pessoa de Meia-Idade , Osteoartrite/etiologia , Osteoartrite/patologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteômica/métodos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Sinovite/sangue , Sinovite/patologia , Espectrometria de Massas em Tandem , Vitronectina/química
5.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008858

RESUMO

An inflamed synovial membrane plays a major role in joint destruction and is characterized by immune cells infiltration and fibroblast proliferation. This proteomic study considers the inflammatory process at the molecular level by analyzing synovial biopsies presenting a histological inflammatory continuum throughout different arthritis joint diseases. Knee synovial biopsies were obtained from osteoarthritis (OA; n = 9), chronic pyrophosphate arthropathy (CPPA; n = 7) or rheumatoid arthritis (RA; n = 8) patients. The histological inflammatory score was determined using a semi-quantitative scale based on synovial hyperplasia, lymphocytes, plasmocytes, neutrophils and macrophages infiltration. Proteomic analysis was performed by liquid chromatography-mass spectrometry (LC-MS/MS). Differentially expressed proteins were confirmed by immunohistochemistry. Out of the 1871 proteins identified and quantified by LC-MS/MS, 10 proteins (LAP3, MANF, LCP1, CTSZ, PTPRC, DNAJB11, EML4, SCARA5, EIF3K, C1orf123) were differentially expressed in the synovial membrane of at least one of the three disease groups (RA, OA and CPPA). Significant increased expression of the seven first proteins was detected in RA and correlated to the histological inflammatory score. Proteomics is therefore a powerful tool that provides a molecular pattern to the classical histology usually applied for synovitis characterization. Except for LCP1, CTSZ and PTPRC, all proteins have never been described in human synovitis.


Assuntos
Artrite/imunologia , Artrite/patologia , Proteínas/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Idoso , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Biópsia , Condrocalcinose , Feminino , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Proteômica
6.
Bone Res ; 8: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083095

RESUMO

We previously reported 18FPRGD2 uptake by the coxofemoral lining, intervertebral discs and facet joint osteophytes in OA using PET/SCAN imaging. However, the molecular mechanism by which the PRGD2 tracer interacts with joint tissues and osteophytes in OA remains unclear. As PRGD2 ligands are expected to belong to the RGD-specific integrin family, the purpose of this study was (i) to determine which integrin complexes display the highest affinity for PRGD2-based ligands, (ii) to analyze integrin expression in relevant tissues, and (iii) to test integrin regulation in chondrocytes using OA-related stimuli to increase the levels of fibrosis and ossification markers. To this end, the affinity of PRGD2-based ligands for five heterodimeric integrins was measured by competition with 125I-echistatin. In situ analyses were performed in human normal vs. OA cartilage and spinal osteophytes. Osteophytes were characterized by (immuno-)histological staining. Integrin subunit expression was tested in chondrocytes undergoing dedifferentiation, osteogenic differentiation, and inflammatory stimulation. The integrins αVß5, αVß3, and αVß6 presented the highest affinity for PRGD2-based ligands. In situ, the expression of these integrins was significantly increased in OA compared to normal cartilage. Within osteophytes, the mean integrin expression score was significantly higher in blood vessels, fibrous areas, and cells from the bone lining than in osteocytes and cartilaginous zones. In vitro, the levels of integrin subunits were significantly increased during chondrocyte dedifferentiation (except for ß6), fibrosis, and osteogenic differentiation as well as under inflammatory stimuli. In conclusion, anatomical zones (such as OA cartilage, intervertebral discs, and facet joint osteophytes) previously reported to show PRGD2 ligand uptake in vivo expressed increased levels of αVß5, αVß3, and ß6 integrins, whose subunits are modulated in vitro by OA-associated conditions that increase fibrosis, inflammation, and osteogenic differentiation. These results suggest that the increased levels of integrins in OA compared to normal tissues favor PRGD2 uptake and might explain the molecular mechanism of OA imaging using the PRGD2-based ligand PET/CT.

7.
Biochem Pharmacol ; 165: 66-78, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30936016

RESUMO

BACKGROUND/AIMS: Synovial fibrosis is a pathological process that is observed in several musculoskeletal disorders and characterized by the excessive deposition of extracellular matrix, as well as cell migration and proliferation. Despite the fact that glucocorticoids are widely employed in the treatment of rheumatic pathologies such as osteoarthritis (OA) and rheumatoid arthritis, the mechanisms by which glucocorticoids act in the joint and their impacts on pro-fibrotic pathways are still unclear. MATERIALS: Human OA synovial fibroblasts were obtained from knee and hip joints. Cells were treated with prednisolone (1 mM) or transforming growth factor-beta 1 (TGF-ß1) (10 ng/ml) for 1 and 7 days for quantification of RNA and protein expression (by real-time quantitative reverse transcription-PCR and western blot, respectively), 72 h for immunocytochemistry analysis, and 48 h for proliferation (by BrdU assay) and migration (by wound assay) studies. In addition, cells were preincubated with prednisolone and/or the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) for 6 h before adding TGF-ß1. pSmad1/5, pSmad2 and ß-catenin levels were analyzed by Western blot. The activin receptor-like kinase-5 (ALK-5) inhibitor (SB-431542) was employed for the mechanistic assays. RESULTS: Prednisolone showed a predominant anti-fibrotic impact on fibroblast-like synoviocytes as it attenuated the spontaneous and TGF-ß-induced gene expression of pro-fibrotic markers. Prednisolone also reduced α-sma protein and type III collagen levels, as well as cell proliferation and migration after TGF-ß stimulation. However, prednisolone did not downregulate the gene expression of all the pro-fibrotic markers tested and did not restore the reduced PPAR-γ levels after TGF-ß stimulation. Interestingly, anti-fibrotic actions of the glucocorticoid were reinforced in the presence of the PPAR-γ agonist 15d-PGJ2. Combined pretreatment modulated Smad2/3 levels and, similar to the ALK-5 inhibitor, blocked ß-catenin accumulation elicited by TGF-ß. CONCLUSIONS: Prednisolone, along with 15d-PGJ2, modulates pro-fibrotic pathways activated by TGF-ß in synovial fibroblasts at least partially through the inhibition of ALK5/Smad2 signaling and subsequent ß-catenin accumulation. These findings shed light on the potential therapeutic effects of glucocorticoids treatment combined with a PPAR-γ agonist against synovial fibrosis, although future studies are warranted to further evaluate this concern.


Assuntos
Osteoartrite/tratamento farmacológico , Prednisolona/farmacologia , Prostaglandina D2/análogos & derivados , Fator de Crescimento Transformador beta/antagonistas & inibidores , Adulto , Idoso , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/patologia , PPAR gama/agonistas , Prostaglandina D2/farmacologia , Transdução de Sinais/fisiologia , Proteínas Smad/fisiologia , beta Catenina/metabolismo
8.
Biochem Pharmacol ; 165: 49-65, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30853397

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage degradation but also synovial membrane inflammation, osteophyte formation and subchondral bone sclerosis. Medical care is mainly based on alleviating pain symptoms, but to date, no effective drug can stop the disease progression. Cartilage is a tissue composed of only one cell type, chondrocytes, wrapped in a collagen rich extracellular matrix they synthesize. Chondrocytes can adopt different phenotypes in vivo and in vitro, defined by the collagen type they produce. Isolated from their matrix, chondrocytes present the particularity to dedifferentiate, producing fibroblastic type I and III collagens. With OA onset, chondrocytes undergo multiple changes, in terms of proliferation, viability, but also secretory profile. The acquisition of a hypertrophic phenotype (producing aberrant type X collagen and catabolic MMP-13 protease) by chondrocytes is well documented and contributes to OA development. However, it is increasingly believed that chondrocytes rather acquire a variety of degenerated phenotypes at the onset of OA, including a "dedifferentiated-like" phenotype that might also contribute to OA progression. In this review, we will (i) present molecular knowledge underlying dedifferentiation process, (ii) emphasize connections between dedifferentiation and OA and (iii) consider OA therapeutic strategies aiming at the maintenance of chondrogenic phenotype.


Assuntos
Desdiferenciação Celular , Condrócitos/citologia , Osteoartrite/patologia , Animais , Cartilagem/patologia , Citocinas/fisiologia , Humanos , Osteoartrite/tratamento farmacológico , Osteoartrite/etiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia
9.
Cell Death Dis ; 10(2): 103, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718510

RESUMO

CEMIP (for "Cell migration-inducing protein" also called KIAA1199 and Hybid for "Hyaluronan-binding protein") expression is increased in cancers and described as a regulator of cell survival, growth and invasion. In rheumatoid arthritis, CEMIP is referred to as an angiogenic marker and participates in hyaluronic acid degradation. In this study, CEMIP expression is investigated in healthy and osteoarthritis (OA) cartilage from human and mouse. Its role in OA physiopathology is deciphered, specifically in chondrocytes proliferation and dedifferentiation and in the extracellular matrix remodeling. To this end, CEMIP, αSMA and types I and III collagen expressions were assessed in human OA and non-OA cartilage. CEMIP expression was also investigated in a mouse OA model. CEMIP expression was studied in vitro using a chondrocyte dedifferentiation model. High-throughput RNA sequencing was performed on chondrocytes after CEMIP silencing. Results showed that CEMIP was overexpressed in human and murine OA cartilage and along chondrocytes dedifferentiation. Most of genes deregulated in CEMIP-depleted cells were involved in cartilage turnover (e.g., collagens), mesenchymal transition and fibrosis. CEMIP regulated ß-catenin protein level. Moreover, CEMIP was essential for chondrocytes proliferation and promoted αSMA expression, a fibrosis marker, and TGFß signaling towards the p-Smad2/3 (Alk5/PAI-1) pathway. Interestingly, CEMIP was induced by the pSmad1/5 (Alk1) pathway. αSMA and type III collagen expressions were overexpressed in human OA cartilage and along chondrocytes dedifferentiation. Finally, CEMIP was co-expressed in situ with αSMA in all OA cartilage layers. In conclusion, CEMIP was sharply overexpressed in human and mouse OA cartilage and along chondrocytes dedifferentiation. CEMIP-regulated transdifferentiation of chondrocytes into "chondro-myo-fibroblasts" expressing α-SMA and type III collagen, two fibrosis markers. Moreover, these "chondro-myo-fibroblasts" were found in OA cartilage but not in healthy cartilage.


Assuntos
Condrócitos/metabolismo , Hialuronoglucosaminidase/metabolismo , Osteoartrite/metabolismo , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Cartilagem Articular/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos/patologia , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Fibrose , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hialuronoglucosaminidase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Osteoartrite/patologia , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo
10.
Oncotarget ; 9(88): 35830-35843, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30533198

RESUMO

Phosphorylation of p62/SQSTM1 (p62) on Serine 349 (P-Ser349 p62) as well as proteasome dysfunction have been shown to activate the cell protective Keap1/Nrf2 pathway. We showed previously that BAY 11-7085-induced human synovial fibroblast cell death includes autophagy and p62 downregulation. In this work, we have studied expression of P-Ser349 p62 in human synovial fibroblasts. Results showed that P-Ser349 p62 was not detected in synovial cell extracts unless cells were cultured in the presence of proteasome inhibitor (MG132). MG132 revealed P-Ser349 p62 turnover, that was further increased by concomitant autophagy inhibition and markedly enhanced in serum starved cells. Starvation sensitized synovial fibroblasts to BAY 11-7085 while MG132 protected both non-starved and starved cells from BAY 11-7085-induced cell death. Lentivirus mediated overexpression of phosphorylation-mimetic p62 mutant S349E markedly protected synovial fibroblasts from BAY 11-7085. Inhibitor of Keap1-P-S349 p62 interaction, K67, had synergistic effect with MG132. Starvation increased p62 molecular weight, that was reversed by serum and bovine serum albumin re-feeding. Furthermore, starvation markedly induced RAD23B. Increased endo-ß-N-acetylglucosaminidase (ENGase) turnover was detected in starved synovial fibroblasts. PNGase F treatment produced faster migration p62 form in human synovial tissue extracts but starvation-like p62 form of higher molecular weight in synovial cell extracts. Co-transfection of NGLY1, with p62 or p62 mutants S349A and S349E markedly stabilized p62 expressions in HEK293 cells. Tunicamycin upregulated p62 and protected synovial fibroblasts from BAY 11-7085-induced cell death. These results showed that P-Ser349 p62 has pro-survival role in human synovial fibroblasts and that de-glycosylation events are involved in p62 turnover.

11.
Int J Mol Sci ; 17(12)2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27999417

RESUMO

Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1ß (IL-1ß), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Cartilagem Articular/patologia , Condrócitos/metabolismo , Osteoartrite/patologia , Envelhecimento , Proteínas Reguladoras de Apoptose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-1beta/metabolismo , Leptina/metabolismo , Óxido Nítrico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Arthritis Res Ther ; 18(1): 219, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716396

RESUMO

BACKGROUND: Glucocorticoid-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory activities of glucocorticoids. However, GILZ deletion does not impair the anti-inflammatory activities of exogenous glucocorticoids in mice arthritis models and GILZ could also mediate some glucocorticoid-related adverse events. Osteoarthritis (OA) is a metabolic disorder that is partly attributed to adipokines such as leptin, and we previously observed that glucocorticoids induced leptin secretion in OA synovial fibroblasts. The purpose of this study was to position GILZ in OA through its involvement in the anti-inflammatory activities of glucocorticoids and/or in the metabolic pathway of leptin induction. The influences of mineralocorticoids on GILZ and leptin expression were also investigated. METHODS: Human synovial fibroblasts were isolated from OA patients during knee replacement surgery. Then, the cells were treated with a glucocorticoid (prednisolone), a mineralocorticoid (aldosterone), a glucocorticoid receptor (GR) antagonist (mifepristone), a selective glucocorticoid receptor agonist (Compound A), mineralocorticoid receptor (MR) antagonists (eplerenone and spironolactone), TNF-α or transforming growth factor (TGF)-ß. Cells were transfected with shRNA lentiviruses for the silencing of GILZ and GR. The leptin, IL-6, IL-8 and matrix metalloproteinase (MMP)-1 levels were measured by ELISA. Leptin, the leptin receptor (Ob-R), GR and GILZ expression levels were analyzed by western blotting and/or RT-qPCR. RESULTS: (1) The glucocorticoid prednisolone and the mineralocorticoid aldosterone induced GILZ expression dose-dependently in OA synovial fibroblasts, through GR but not MR. Similar effects on leptin and Ob-R were observed: leptin secretion and Ob-R expression were also induced by prednisolone and aldosterone through GR; (2) GILZ silencing experiments demonstrated that GILZ was involved in the glucocorticoid-induced and mineralocorticoid-induced leptin secretion and Ob-R expression in OA synovial fibroblasts; and (3) GILZ inhibition did not alter the production of pro-inflammatory cytokines by OA synovial fibroblast or the anti-inflammatory properties of glucocorticoids. CONCLUSIONS: The absence of GILZ prevents corticoid-induced leptin and Ob-R expression without affecting the anti-inflammatory properties of glucocorticoids in OA synovial fibroblasts. Mineralocorticoids also induce leptin and Ob-R expression through GILZ.


Assuntos
Fibroblastos/metabolismo , Leptina/biossíntese , Osteoartrite do Joelho/metabolismo , Sinoviócitos/metabolismo , Fatores de Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Aldosterona/farmacologia , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Técnicas de Silenciamento de Genes , Glucocorticoides/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Mineralocorticoides/farmacologia , Reação em Cadeia da Polimerase , Prednisolona/farmacologia
13.
Oncotarget ; 7(17): 23370-82, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-26993765

RESUMO

Inhibition of proapoptotic pathways in synovial fibroblasts is one of the major causes of synovial proliferation and hyperplasia in rheumatic diseases. We have shown previously that NF-κB inhibitor BAY 11-7085, through inactivation of PPAR-γ, induces apoptosis in human synovial fibroblasts. In this work we showed that BAY 11-7085 induced autophagy that preceded BAY 11-7085-induced apoptosis. Of interest, BAY 11-7085 induced Serine 211 phosphorylation and degradation of glucocorticoid receptor (GR). Glucocorticoid prednisolone induced both activation and degradation of GR, as well as autophagy in synovial fibroblasts. BAY 11-7085-induced cell death was significantly decreased with glucocorticoid inhibitor mifepristone and with inhibitors of autophagy. Both BAY 11-7085-induced autophagy and GR activation were down regulated with PPAR-γ agonist, 15d-PGJ2 and MEK/ERK inhibitor UO126. Inhibition of autophagy markedly decreased endogenous and BAY 11-7085-induced ERK phosphorylation, suggesting a positive feed back loop between ERK activation and autophagy in synovial fibroblasts. Co-transfection of MEK1 with PPAR-γ1 in HEK293 cells caused known inhibitory phosphorylation of PPAR-γ1 (Serine 112) and enhanced GR degradation, in the absence or presence of prednisolone. Furthermore, GR was both phosphorylated on Serine 211 and down regulated in synovial fibroblasts during serum starvation induced autophagy. These results showed that GR activation and PPAR-γ inactivation mediated BAY 11-7085-induced autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fibroblastos/patologia , Nitrilas/farmacologia , Osteoartrite/patologia , Receptores de Glucocorticoides/metabolismo , Sulfonas/farmacologia , Membrana Sinovial/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , PPAR gama/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo
14.
Clin Proteomics ; 12: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26405438

RESUMO

BACKGROUND: Mitral regurgitation is a frequent valvular heart disease affecting around 2.5 % of the population with prevalence directly related to aging. Degeneration of mitral valve is broadly considered as a passive ongoing pathophysiological process and little is known about its physiological deregulation. The purpose of this study was to highlight new biomarkers of mitral regurgitation in order to decipher the underlying pathological mechanism as well as to allow the diagnosis and the monitoring of the disease. RESULTS: Modulation of various blood proteins expression was examined in patients suffering from different grades of mitral regurgitation (mild, moderate and severe) compared to healthy controls. To this end, several routine clinical assays and the multi analyte profile technology targeting 184 proteins were used. High-density lipoprotein, apolipoprotein-A1, haptoglobin and haptoglobin-α2 chain levels significantly decreased proportionally to the degree of mitral regurgitation when compared to controls. High-density lipoprotein and apolipoprotein-A1 levels were associated with effective regurgitant orifice area and regurgitant volume. Apolipoprotein-A1 was an independent predictor of severe mitral regurgitation. Moreover, with ordinal logistic regression, apolipoprotein-A1 remained the only independent factor associated with mitral regurgitation. In addition, myxomatous mitral valves were studied by immunocytochemistry. We observed an increase of LC3, the marker of autophagy, in myxomatous mitral valves compared with healthy mitral valves. CONCLUSION: These potential biomarkers of mitral regurgitation highlighted different cellular processes that could be modified in myxomatous degenerescence: reverse cholesterol transport, antioxidant properties and autophagy.

15.
Autophagy ; 10(7): 1229-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24819607

RESUMO

To date, precise roles of EMD (emerin) remain poorly described. In this paper, we investigated the role of EMD in the C16-ceramide autophagy pathway. Ceramides are bioactive signaling molecules acting notably in the regulation of cell growth, differentiation, or cell death. However, the mechanisms by which they mediate these pathways are not fully understood. We found that C16-ceramide induces EMD phosphorylation on its LEM domain through PRKACA. Upon ceramide treatment, phosphorylated EMD binds MAP1LC3B leading to an increase of autophagosome formation. These data suggest a new role of EMD as an enhancer of autophagosome formation in the C16-ceramide autophagy pathway in colon cancer cells.


Assuntos
Autofagia/efeitos dos fármacos , Ceramidas/farmacologia , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fagossomos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Células HCT116 , Humanos , Isoquinolinas/farmacologia , Proteínas de Membrana/química , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/efeitos dos fármacos , Proteínas Nucleares/química , Fagossomos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Estaurosporina/farmacologia , Sulfonamidas/farmacologia
16.
Talanta ; 125: 265-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24840443

RESUMO

Acute graft-versus-host disease (aGVHD) remains a life-threatening complication of hematopoietic stem cell transplantation (HSCT) therefore limiting its application. To optimize the management of aGVHD and reduce therapy-related toxicity, early specific markers are needed. The main objective of this study was to uncover diagnostic biomarkers by comparing plasma protein profiles of patients at the time of acute GVHD diagnosis with those of patients undergoing HSCT without aGVHD. Additional analysis of samples taken 15 days before aGVHD diagnosis was also performed to evaluate the potential of our newly discovered biomarkers for early diagnosis. To get complementary information from plasma samples, we used three different proteomic approaches, namely 2D-DIGE, SELDI-TOF-MS and 2D-LC-MS(E). We identified and confirmed by the means of independent techniques, the differential expression of several proteins indicating significantly increased inflammation response and disturbance in the coagulation cascade. The variation of these proteins was already observed 15 days before GVHD diagnosis, suggesting the potential early detection of the disease before symptoms appearance. Finally, logistic regression analysis determined a composite biomarker panel comprising fibrinogen, fragment of fibrinogen beta chain, SAA, prothrombin fragments, apolipoprotein A1 and hepcidin that optimally discriminated patients with and without GVHD. The area under the receiver operating characteristic curve distinguishing these 2 groups was 0.95.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/análise , Doença Enxerto-Hospedeiro/sangue , Proteômica/métodos , Adolescente , Adulto , Idoso , Área Sob a Curva , Cromatografia Líquida , Estudos de Coortes , Eletroforese em Gel Bidimensional , Feminino , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Proteoma , Análise de Regressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Condicionamento Pré-Transplante , Transplante Homólogo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...